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Mapping from Rectangular to Harmonic Representation 
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An algorithm is developed to determine the Fourier harmonics representing the levei con- 
tours of a scalar function given on a rectangular grid. This method is applied to the problem 
of computing the flux coordinates and flux surface averages needed for !tD transport codes 
and MHD stability codes from an equilibrium flux function on a rectangular grid. ST 1PYi 
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Given the function $(x, ~1) on a rectangular grid, our objective is to find the 
inverse functions x($, 0) and J$$, 0). In particular, we wish to determine the coef- 
ficients XC,,($), X,,,($), Y,.,($), and Y,,(lc/) in the truncated Fourier series 

such that the harmonic representations a($, 0) and y($, 0) most closely 
approximate the inverse functions ?c(lc/, 8) and J(*, 6). Once the 4M+ 2 Fourier 
coefficients X,.,,, , X,,, , Y,.,, and Y,,, (not counting X, and YrO, which have no effect 
on I and 7) have been determined for m = O,..., M, for a sulficiently dense set of $ 
values within the range of interest, then XC,($), X3,($). Y,.,,,(II/), and Y,%,,(G) can be 
determined as needed by interpolation. 

I. LEAST SQUARES FIT 

The essential idea of our method is to vary the harmonic coefficients X,:,,, X.s,7,. 
Y,,?l > and Y,,, until a least squares fit is found for any given level contour 
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$(x, JJ) = Y. For this purpose, we choose to evaluate z( ul, 0) and j( Y, 8) at a set of 
at least 4M+ 2 angles Oj, i= l,..., Z34M+ 2. (Fewer angles and fewer harmonics 
are needed if any symmetry conditions are known to prevail.) If this set of angles is 
held fixed, the functions sin(m0;) and cos(&?,), nz = 0 ,..., M and i = l,..., Z, can be 
evaluated once and stored for computational efficiency. For any given value of u’, 
the coefficients X,,,, X,,, Y,,, and Y,, are varied until a minimum is found for 

w= i ( Y- i+qq Y, e,), jy Y, e,)] )‘. (3) 
i= I 

In Eq. (3), the Fourier series (1) and (2) are evaluated to find -?( U, ei) and j( Y, ei). 
Then, a two-dimensional interpolation is carried out to find $(.?, J) from the values 
given on the rectangular grid. This process is repeated while the harmonic coef- 
ficients are varied until the function W given by Eq. (3) is minimized. 

If the interpolation of $(.C, J) is carried out by conventional methods (such as 
using piecewise polynomials), then the first and second derivatives of $(.?, j) can 
easily be computed along with the interpolated value. In that case, we can explicitly 
compute smooth approximations to the first and second partial derivatives of W 
with respect to the harmonic coefftcients with very little extra computational work. 
This makes the minimization of W much easier and faster. 

This method should work particularly well if only a few harmonics are needed to 
approximate the inverse functions x( !P, 19~) and J$ Y, ei) to the desired accuracy. The 
amount of computational effort depends on the number of harmonics needed, not 
on the number of grid points used in the original rectangular mesh. This method 
also works best when a good initial guess is already in hand and only needs to be 
refined by further minimizing W in Eq. (3). The method works well, for example, 
when the level contours are changing slowly in time so that only a few iterations are 
needed each time the harmonics need to be updated. 

II. HARMONIC OPTIMIZATION 

One essential problem with the method described above is that the harmonic 
coefficients needed to minimize W (i.e., to approximate a given closed curve level 
contour) are not unique. The shape of each level contour is determined by 2M+ 3 
constraints on the harmonic coefficients, while the remaining 2M- 1 constraints, 
which are needed to determine all 4M-t 2 harmonic coefficients, merely determine 
the disposition of the anglelike variable 8 that parameterizes the curve. In order to 
see this, suppose 8 is chosen to be the angle between the x axis and the tangent vec- 
tor to the curve. Then 
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where s is the arclength along the curve. Now, if we expand dsjd@ as an iniinite 
Fourier series in 0 

ds -g=c cs, cos(n8) + S,, sin(&)] 

and then integrate the equation for dx/dO, it can be seen that S,.i and S,, must be 
zero in order to make x(0) periodic (to have the curve close on itself). If we then 
truncate these series for x(6) and ~(0) to M Fourier harmonics, as in Eqs. (1) and 
(2), it can be seen that the following 2M + 3 coefficients 

-yo, J-0, SC03 sc2...., S&f+ L7 ss2,.--, S&f+ 1 

determine the shape and position of the curve. Transforming to any other anglelike 
variable moves the lines of constant angle around on the curve and changes the 
Fourier coefficients in Eqs. (1) and (2), but leaves the shape of the curve 
unchanged. Note, if the curve has mirror reflection across the midplane, so that 
X,,, = 0 and Y, = 0 in Eqs. (1) and (2), then the shape of the curve determines 
M + 2 constraints and the disposition of the anglelike variable determines M- 1 
constraints for a total of 2M + 1 coefficients. 

Following the work of Hirshman and Meier [l], we establish an algorithm 
which minimizes the higher harmonic coefficients while leaving the shape 
unchanged in order to find the most rapidly converging Fourier series that 
approximates each level contour. This is accomplished by minimizing a penalty 
function P which increases rapidly with the amplitude of the highest harmonics, 
using only variations which leave W [defined by Eq. (3)] unchanged. An example 
of such a function is 

where p and q are positive exponents. This function reaches its absolute minimum 
value P = 1 when all but the first harmonics are zero. If all the harmonics are 
resealed, P remains unchanged. The zeroth harmonics X, and Yco have no effect on 
P? since they influence only the position and not the shape of the curve. There are 
many suitable functions with these properties; the particular choice made in Eq. (4) 
is not important. The optimum choice for exponents p and q is discussed in 
reference [l]. We have used p = 1 and q = 4 to obtain a rapidly converging 
harmonic representation. 

The function P is to be minimized subject to the constraint that W remains 
unchanged. Suppose the array C = (CL,..., C4M+2j represents the set of all the 
harmonics being considered 
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Variations of C which leave W unchanged (and, therefore, variations which run 
parallel to the level contour being sought) are given by 

VW- 6Cvw. q, =x - ,vw,’ 

The variation of P subject to this constraint is then given by 

Using Eq. (6) and rearranging, we get 

6P,,=C -- 
[ 

SP xi (aw/aci)(ap/aci) aw 6c . 
m acm xi(aw/acjj2 ac, 1 m 

(61 

(8) 

A constrained minimum, then, is achieved when 6P,, =0 with arbitrary variations 
6C,. This results in the system of equations 

ap -- 
ac, 

cj (a w/acj)(ap/aci) a w = o 
ci wvac,)2 ac, 

for m = l,..., 4M+ 2. (9) 

These equations need to be solved together with the equations needed for the 
unconstrained minimization of W 

dW=O 
ac, for m = l,..., 4M+ 2. (10) 

Equations (9) and (10) taken together represent 8M+ 4 equations for the 4M+ 2 
variables in array C. In spite of this, however, we will now show that this combined 
system of equations is not overdetermined. Let 

and 

(11) 

(12) 

Since the values of W, may converge to zero at different rates as we converge to a 
solution of Eq. (lo), the values of w,, are left free (and, in general, nonzero). The 
constraint equations (9), which may be written 

4M+2 

Pm= 1 LViPiW,, 
i=l 

(13) 
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imply 

As long as the values of W,, converge to zero independent of one another, the 
values of W, (and, consequently, P,,) are free, and Eq. (9) imposes no constraint 
on P,. 

Suppose, however, there are K linearly dependent relations among the values of 
W,, as they converge to zero 

4A4 + 2 

C ajk W,= 0 
j=l 

It then follows that 

4&f + 2 

C ajkM>=O 
j=l 

and, from Eq. (14), 

4Mf2 

C aj,Pj=O 
j= 1 

for k = I,..., K, (35) 

for k = l,..., K 

for k = l,..., K. !’ 61 11 ., 

Hence, any linear dependence among the values of W,, as they converge to zero, 
results in a corresponding linear dependence constraint on the values of P,. Under 
these conditions, there would be 4M + 2 - K constraints from Eqs. (10) and K con- 
straints from Eqs. (9). Consequently, there are a total of 4-M+ 2 constraining 
equations for the 4M+ 2 unknowns. 

III. SINGULAR VALUE DECOMPOSITION 

The well-known technique of singular value decomposition [2,3] can be used to 
isolate any linear dependence among the minimizing Eqs. (IO). In order to see how 
this is done in the present context, Taylor series expand Eq. (10) 

a W(C) a W(C’) -=-..-++ 
ac, ac,, 

a2wq~~l)n+ . . . . 
n awe, 

(i-7) 

where C’ is the value of C at the current iteration. Neglect higher order terms and 
do a singular value decomposition of the Hessian matrix 
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where U and V are orthogonal matrices (i.e., U- ’ = U’) and 

Oj, j= l,..., 4M+ 2 

are the singular values. Multiply Eq. (17) on the left by U- ’ and look for con- 
ditions under which C is a solution to 

to obtain 

c Ujm(C’)fgLj~ Vjn(C-Cl),,. 
nz m n 

(19) 

If all the singular values oj are nonzero, then none of the equations for 8 W/K,,, 
are linearly independent, and there are no further constraints imposed by Eq. (9). 
However, if any of the singular values are zero, oj = 0, then 

; c:,(C$p=O; ,?? 
over that range of values of C’ in the neighborhood of the minimum of W where we 
neglected higher order terms in the Taylor series (17). For each of these linear 
relations among the equations for Wm, it follows from Eq. (16) that there is the 
same linear relation among the values for P,, 

Hence, we have the following 4M + 2 equations 

C U,,(C) F = 0, Qj St Oi # 0, 
m m 

C U,,(C) p = 0, Vj St Oj = 0, 
m m 

to determine the 4M I- 2 elements of the array C. 

IV. IMPLEMENTATION 

(20) 

(21) 

It is useful to describe the way in which the above method was implemented, in 
order to point out how various problems with the implementation were solved. 
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First. the two-dimensional array of $(x, y) values is searched to find the 
minimum or maximum values of interest. These minimax grid points are tested to 
determine which are elliptical (true minima or maxima, referred to as o-points), and 
which are hyperbolic (saddle points, referred to as x--points). One elliptical point is 
chosen and the true position (x,, v,,) of that minimum or maximum is found, con- 
sistent with the interpolation being used. A suitable range is found for $ which 
must not include any other minimax points. Particular care must be taken to avoid 
hyperbolic points, since the harmonic representations ( 1) and (2) will not converge 
on contours passing through these x-points (separatrices). A set of tj values 1s 
chosen in this range on which the coefficients of the inverse functions will be deter- 
mined, working from the center to the edge. 

Near the o-point, the contours are nearly elliptical, and the inverse functions can 
be initially approximated by 

Using the representation, we can choose ~9~~ = 0 and choose positive values for the 
other coefficients in order to place the point where 8 = 0 on the horizontal line 
Ia= j’, to the right of the minimax point. The coefficients can then be determined 
analytically from the polynomial approximation to $(x, 1%) near the o-point. These 
coefficients can be used as the first iterate for the inverse functions representing the 
contour closest to the o-point. 

As long as the function $(x, I’) is essentially parabolic near the o-point, the 
harmonic coefficients scale like h” ’ where 

The scaled coefficients are extrapolated away from the o-point in order to provide 
the initial iterates for each successive contour, working out to the edge. If a good 
initial iterate is already available from previous solutions for the harmonics, then a 
weighted average is taken of the two. 

Problems most frequently occur near the outermost contour. If this contour is 
located near a separatrix, the higher harmonic amplitudes increase dramatically, 
making the initial extrapolation and subsequent solution more difficult. Since the 
x-point on the separatrix contour is a saddle point, the [Z( Y, Bi), F( Y, Rj)] points 
being evaluated in Eq. (3) can inadvertently get caught on the wrong side of the 
saddle, with no gradient to drive it back toward the region of interest. Near such a 
saddle point, and also near the edge of the rectangular domain, more care needs to 
be taken in the choice of interpolation used to evaluate $(a, j). For these reasons, 
cautious methods of extrapolation and nonlinear equation solving were used, par- 
tiucularly for the outer contours. 

If the iteration is started far from a solution, it is generally found that none of he 
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singular values cj are zero. As the iteration proceeds, however, 2M- 1 of the 
singular values rapidly converge to zero, so that a transition has to be made from 
Eq. (20) to Eq. (21) for 2M- 1 equations. This transition is made smooth by 
always taking these 2M- 1 equations to be a linear combination of Ioj,Iolj times 
Eq. (20) plus 1- /~~/grl times Eq. (21) where c1 is the singular value with the 
largest magnitude. The other singular values are found to always remain about the 
same order of magnitude relative to one another. 

V. JACOBIAN AND METRIC ELEMENTS 

Once the inverse functions (1) and (2) have been determined for a given choice of 
parameters tj and 8, it is a straightforward matter to compute the Jacobian 

metric elements 

area, 

A= 
J s 
-’ dt,b 2n do d($, (3, 

0 

(23) 

(24) 

(251 

(26) 

and contour integral, 

The Fourier representation makes it particularly easy to take 8 derivatives. We use 
cubic spline interpolation [4, 51 in $ to find the II/ derivatives and Fast Fourier 
Transform [4,5] techniques to take products and evaluate the other nonlinear 
functions. 

For applications involving axisymmetric figures of rotation, such as tokamak 
equilibria [6], we wish to map from a polar coordinate system centered on the axis 
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of rotation (R, Y, 4) to a “flux coordinate system” ($, 8,O) given the flux function 
$(R, Y). Then, the Jacobian is 

and the volume is 

(29j 

VI. APPLICATIONS 

Two examples are shown in Figs. 1 and 2 of axisymmetric MHD equilibria that 
were computed in rectangular (RF Y, 4) coordinates and then mapped to flux coor- 
dinates using the procedure described in this report. In each case, four harmonics 
were used to represent the inverse functions R($, 0) and Y($, 0) on each of 20 level 
contours. It was found that using fewer than four harmonics resulted in an obser- 
vable discrepancy in the shape of the outer flux surface at the tip of the bean in 
Fig. 1, while using more than four harmonics led to no significant further change in 
the plotted results or the computed flux surface averages (Jacobian or metric 
elements). The exponents p = 1 and 4 = 4 were used in Eq. (4), which resulted in 
rapidly converging harmonic representations. 

Both of the computed flux functions $(R, Y) for these equilibria have reflection 
symmetry across the midplane. This symmetry condition was used to reduce the 
number of harmonic coefficients needed in Eqs. (1) and (2) and also to reduce rke 
number of angles needed to evaluate Eq. (3). For the examples presented here, 12 
equally spaced angles Qi were used in the upper half-plane. The number of angles 
needed depends partly on the number of harmonics used (we need at least as many 
angles as harmonic coefficients) and partly on the spacing needed to resolve details 
of the level contour shape, particularly near the x-point of a separatrix. It is impor- 
tant to keep in mind that the anglelike variable 0 is generally not the polar angle. 
The harmonic optimization procedure [Eq. (4)] helps to resolve details of the level 
contours with the fewest harmonics and also with the fewest angles ei in Eq. (ii. 
Essentially, the optimization procedure tends to force equally spaced angles 8L to 
accumulate in regions where the level contour curvature is the greatest, as can be 
seen in both figures. 

During the iteration, linearized forms of Eqs. (20) and (21) were solved using 
NAG [S] routines F02WCF to find the singular value decomposition and FO4ARF 
to solve the linear equations for C. On the first pass through, the PBX equilib~~m 
shown in Fig. I typically needed five to six iterations per flux surface while the 
ASDEX case shown in Fig. 2 required only three iterations for each of the inner 17 
flux surfaces and up to six iterations for the outer three surfaces. On a CRAY-I 
computer, this entire mapping procedure took 2.0 cpu set for the PBX case and 
1.15 cpu set for the ASDEX case. 
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FIG. 1. Cross section of the flux coordinates computed for the Princeton Beta Experiment (PBX). 
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FIG. 2. Cross section of the flux coordinates computed for the ASDEX upgrade tokamak 
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Clearly, the most difficult part of the computation is near the outer contours, 
Relative to the interval of $ between the innermost contour and the separatrix 
[saddle point in $(R, Y)], the outer contour shown in Fig. 1 is 97% of the way to 
the separatrix. In this respect, the ASDEX case was a more difficult configuration; 
the outer contour shown in Fig. 2 is only 93 % of the way to the separatrix. 

Since the function $(R, Y) is the solution of an elliptic equation, and con- 
sequently very smooth, for the cases presented here, sixth order polynomials in 
both R and Y were used to interpolate $(R, Y) on the evenly spaced (R, Y) grid to 
determine the inner contours, while lower order interpolation was used near the 
edge. This was found to be more accurate and to use less computer memory than 
bicubic splines. The plasmas shown in these examples do not cover the entire rec- 
tangular grid, since other structures (limiters, walls, divertors and coils, not shown) 
had to also fit on the grid in the original equilibrium computations. While the 
entire rectangular grid in the PBX case (Fig. 1) contains 51 horizontal by 61 ver- 
tical points, there are only 14 grid points across the midplane of the plasma and 40 
points from the top to bottom tips of the plasma. In the ASDEX case (Fig, 2). a 
61 x 101 grid was used with 32 x 55 points between the extremities of the plasma. 
On of the advantages of the method presented in this paper compared to most con- 
ventional contour tracing routines is that the contours remain smooth even when 
the rectangular grid is coarse. 

The examples described above demonstrate the capability of the method under 
the realistic conditions for which it was developed, but they do not provide known 
absolute measures with which to compare the accuracy of the results. For this pur- 
pose we computed the area enclosed by elliptical flux surfaces prescribed 
analyticaliy. The results depend on the coarseness of the rectangular grid, on the 
method of interpolating on this grid, on the number of angles Bi used in Eq. (3j, 
and on the method used to integrate Eq. (26). Using a 32 x 32 grid, fourth order 
local interpolation, 20 angles Bi, and cubic spline integration of Eq. (26) over 20 
surfaces, the area was computed with relative error 4 x 10p7. 

VII. CONCLUSIONS 

The method normally used to determine and integrate along level contours 
involves tracing out each contour by computing the local intersections of the con- 
tour as it crosses each line of the rectangular grid. Compared with this standard 
method, our mapping procedure has the following advantages: The computed har- 
monic representation is relatively insensitive to the coarseness of the rectangular 
grid. The mapping produces a compact parametric representation of a curvilinear 
coordinate system, from which the Jacobian and metric elements can be computed. 
The representation uses an optimal choice for the parameter 8 to make the Fourier 
series (1) and (2) converge as rapidly as possible. Hence, this representation 
provides a good starting point for mapping to any other curvilinear coordinate 
system that follows the level contours (flux coordinates) [6]. The computational 
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time depends on the number of harmonics needed and the number of angles oi used 
to evaluate Eq. (3) not on the number of rectangular grid points. The iteration 
benefits from any previous computations, provided the contour shapes have not 
changed very much. 

Mapping to harmonic representation in the form presented here cannot be used 
in multiply connected regions or in the neighborhood of a separatrix. The method 
must be limited to a region of simply nested level contours. When approaching a 
separatrix, the user must be cautious to avoid reaching out beyond the separatrix 
during the iteration. 

When applying this method to a new problem, the user must verify that enough 
harmonics and evaluation angles tii in Eq. (3) are used. There is some incentive to 
choosing as few harmonics and angles as needed in order to minimize com- 
putational time. Compared to contour tracing, there is generally less interpolation 
on the rectangular grid, but somewhat more effort needed to compute the singular 
value decomposition and the solution of Eqs. (20) and (21). 
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